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Background for Sequence Learning

Definition of a sequence
A sequence consists of symbols of a given finite alphabet Σ in
a given order: s0, s1, . . . , sn

Examples

• Genetic sequence: AGCTGTTCGT , |Σ| = 4, Σ = {A,C ,G ,T}
• Protein sequence: KVKTGCKATLR , |Σ| = 20

• Text: The house is blue , |Σ| = 4, (# distinct words in corpus)
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Sequence Classification

Class Data points
+1 C70124045F0*EE*ADC00E9D64A000C6689CCF1C70
+1 7413BAEF01000668951488B7000F0*EE*AD00081CA
-1 08F9C81A80C18B484000895110B8040000C20C00CCC
-1 CCCFF8CC84C8B5C8BC18B484C8B505C8340240481

Find subsequences that can be used to identify the class.

?? CC8CC84C8BC8B458B4CC0F82B505FB4C83B4B0481
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Related Work

Bag of Words

• Loss of structural order ( e.g., Mary is faster than John)
• Often not accurate enough

Kernel SVM

• Lift into implicit high-dimensional feature space through
kernel trick

• Restrict features for scale (e.g., max 5-gram)
• Not easily interpretable (Blackbox)

SEQL (Our Approach)

• Works in explicit high-dimensional feature space
• Unrestricted features (i.e. all-length subsequences)
• Interpretable classifier (Whitebox)
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All-Subsequence Feature Space

Sample sequence: . . . F09EE1AD . . .
Uni-gram (all): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F (16 possible)
Bi-gram: F0, 09, 9E, EE, 1A,. . . (162 = 256 possible)
Tri-gram: F09, 09E, EE1, E1A, 1AD,. . . (163 = 4096 possible)
...

...
8-gram: F09EE1AD,. . . (168 = 4294967296 possible)

Representation of sequence in explicit vectorspace of all
subsequences:

0, 1, 2, 3, 4, . . . , F , 00, 01, 02, 03, . . . , FF , 000, 0001, . . .
xi = (1, 1, 0, 0, 0, . . . , 1, 1, 0, 0, 1, . . . , 1, 0, 0, . . . )
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Linear Sequence Classifier
Given:
Training set of labeled examples:

{xi , yi} for i = 1, . . . ,N where yi ∈ {−1, 1}

xi ∈ Rd with d = number of features

Goal:
Find β = (β1, β2, . . . , βd) , βi ∈ R by optimizing:

β∗ = argmin
β∈Rd

L(β) = argmin
β∈Rd

N∑
i=1

ξ(yi , xi , β) + CR(β)

Classical gradient descent is computationally infeasible for a
large feature space

β(t) = β(t−1) − ηt∇L(β(t−1))

Insight Centre for Data Analytics January 20, 2016 Slide 7



SEQL

Algorithm 1 SEQL worflow
Set β(0) = 0

while !termination condition do

Calculate objective function L(β(t))

Find feature with maximum gradient value

Find step length ηt by line search

Update β(t) = β(t−1) − ηt ∂L
∂βjt

(β(t−1))

Add corresponding feature to feature set

end while
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Contribution

1. Study influence of problem characteristics on
classification performance (simulation)

2. Extend SEQL approach to regression (gradient bound for
squared error loss)

3. Real-World Applications
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Contribution 1: Simulation Dimensions

• Alphabet size |Σ|
• Sequence length L

• Data set size N

• Motif lengthm

• Sparsity of the feature space

• Noise in the motifs
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Contribution 1: Analysis

Accuracy

• Classification performance (ACC, AUC, F1, ...)

Speed

• Number of iterations

• Quality of gradient bound (pruning ration)

• Run time

Interpretability

• Number of produced features
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Contribution 1: Simulation Framework

Systematic experiments on generated sequences:

Generation of N sequences of length L

l1, l2, . . . , lL

where li ∼ U(Alphabet)

Insert motifs of length m in positive sequences.
Ratio of positive to negative sequences is 1:10
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Contribution 1: Data Generation

1. Random generation of a motif

2. Determine motif insertion position randomly for each
sequence

3. Random generation of sequence and insertion of motif at
position
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Contribution 1: Data Generation

Algorithm 2 Positive sequences generation
Generate motif by drawing m symbols from ∼ U(Alphabet)
for i < N · 0.1 do

pos ∼ U(L−m)
for l < (L−m) do

if l = pos then
add motif to sequence

else
add symbol l ∼ U(Alphabet) to sequence

end if
end for
add sequence to data set

end for
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Contribution 2: Extension to Regression

Value Data points
+0.2 C70124045C00E9D64A000CCCF1C70
+1.4 7413BAEF0100051488B700000081CA
-3.2 08F9C81A80000895110B8040000C20
-0.1 CCF8CC84C8B5C8BC8B505C834024

Implementation of squared error loss and new gradient bound

ξ(yi , xi , β) =
N∑
i=1

(yi − βtxi )2

With L1 regularization known as LASSO.

Questions Influence of loss function and quality of the bound
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Contribution 3: Real World Application

Classification Task
Microsoft Malware Challenge (BIG 2015)
Kaggle Competition in early 2015

Goal Classification of Malware into 9 families

Data ∼500GB of hexadecimal sequences

Regression Task
We are still looking for problem domains for sequence
regression?
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Future Work

Regression applications
Test on real world application.

Rescaling of features
TF-IDF style rescaling of feature instead of binary indicator [1]
and analysis of influence for the gradient bound quality.
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