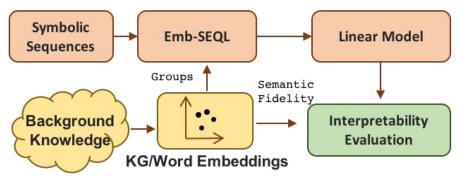
Centre for Data Analytics

Background Knowledge Injection for Interpretable Sequence Classification

Severin Gsponer¹, Luca Costabello², Chan Le Van², Sumit Pai², Christophe Gueret², Georgiana Ifrim¹, Freddy Lecue²

¹ Insight Centre for Data Analytics University College Dublin ² Accenture Labs Dublin

16.09.19



Contributions

Groups:

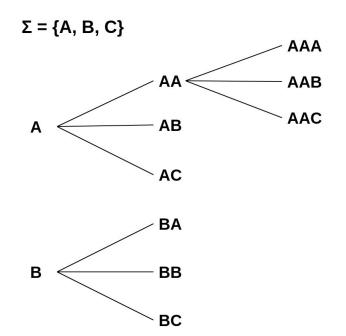
Regex-like expansion of traditional k-mers

Emb-SEQL:

Injection of Background Knowledge into Sequence Learning Algorithm

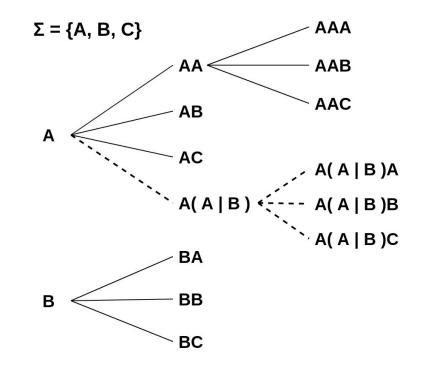
Semantic Fidelity:

Metric to quantify interpretability

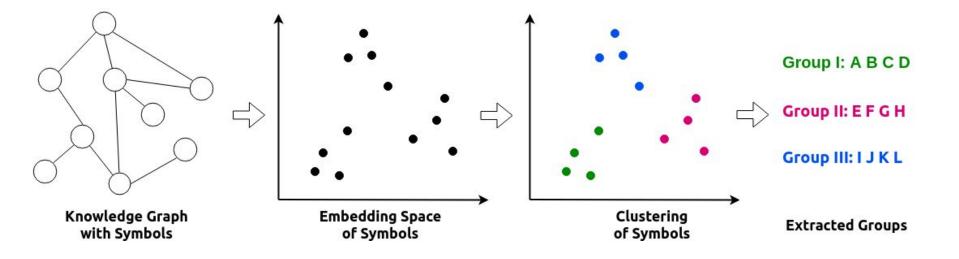

Symbolic Sequence Classification

Sequence	Class	
ABBCBAABCBABCBABBBCBABBABBCB	+1	
CCBBABACAABBABBAAABBBCCBBABA	-1	Σ = {A, B, C}
ACBBCACCCBAABCBABCCABCAABCCA	+1	
BABACCBABCTABCBABBCAABCBBBCA	?	

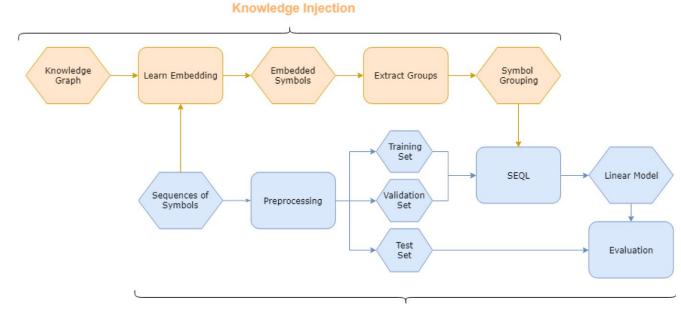
<i>k</i> -mers: Consecutive sequences <i>k</i> of symbols					
<i>2</i> -mer:	AB				
<i>5</i> -mer:	BCTCB				


SEQL - Sequence Learner

- Integrated approach
- Learns sparse *k*-mer based linear models
- Feature space of all possible *k*-mers
- Gauss-Southwell coordinate descent
- Iteratively add best *k*-mer to model
- Exploits structure in feature space



SEQL - Sequence Learner with Groups


- Exploit structure in symbol space
- Use groups to gain more flexibility
- *Groups* are built by combining basic symbols with OR
- Groups predefined by user or automatically generated

Automatic Group Generation

Emb-SEQL Pipeline

store and a state of the state of the state of the

Sequence Learning

Interpretability

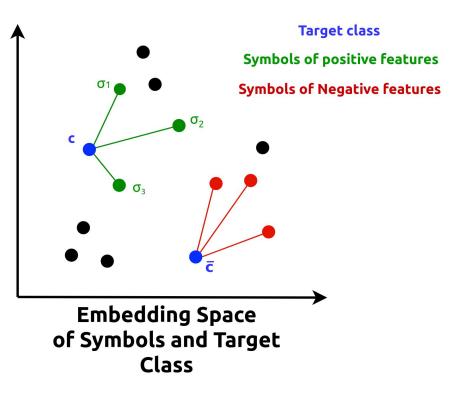
- Interpretability is crucial in some problems
- Accuracy-interpretability trade-off
- Measuring interpretability of models is an open question

Semantic Fidelity intuition:

- Positive features should be "close" to target class
- Negative features should be "close" to non-target class

Functional grounded protocol as proxy measurement

Semantic Fidelity


k-mer - Target Class Distance

$$d_c(\phi, c) = \frac{1}{n_{\phi}} \sum_{\sigma_j \in \phi} \|\mathbf{E}_{\sigma_j} - \mathbf{e}_c\|$$

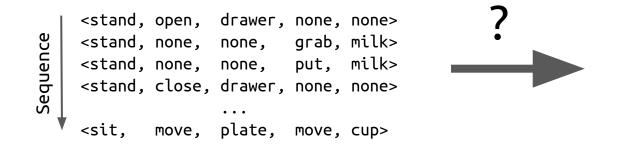
Weighted Target Class Distance $h(\phi) = |w| \begin{cases} d(\phi, c) & \text{if } w \ge 0\\ d(\phi, \bar{c}) & \text{otherwise} \end{cases}$

Semantic Fidelity

$$SF = 1 - \frac{1}{2n} \sum_{\phi_i \in \Phi} h(\phi_i)$$

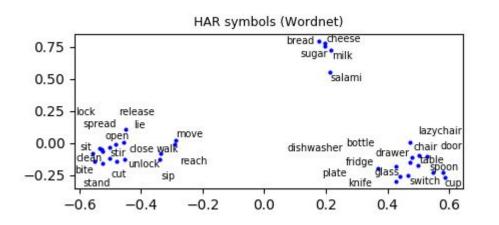
Experiment

Opportunity - Human Composite Activity Recognition (HAR) [1]:


- Predict Composite Activity
- Multiclass classification problem
- Combinations of 5 low level features categories ($|\Sigma| > 1400$ symbols)

PhosphoELM - Protein Classification [2]:

- Binary classification problem
- Predict Kinase group
- Amino acid sequences ($|\Sigma| = 21$ symbols; 438 sequences)

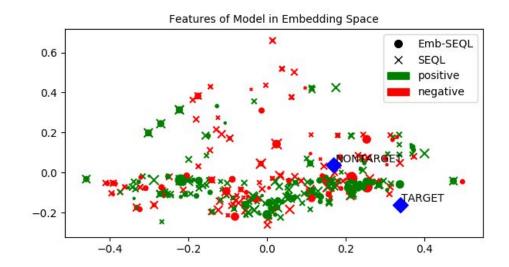

Composite Activity Recognition

Predict composite activity based on sequence of low-level activity

Coffee time Early morning Cleanup Sandwich time Relaxing

Composite Activity Recognition

Atomic symbol embeddings


Weight	Feature
1.0	 ([sit, release, cheese, move, knife cheese] OR [stand, move, plate, move, plate] OR [stand, move, plate, reach, drawer1] OR [stand, move, plate, open, drawer1] OR [stand, reach, bread, open, drawer3])
-0.867	 〈 ([stand, open, fridge, move, milk] OR [stand, none, none, release, milk] OR [walk, move, plate, none, none] OR [walk, move, plate, release, bread] OR [walk, none, none, move, plate] OR [stand, reach, sugar, reach, spoon]) , [stand, none, none, none] >

Sandwich time model

Results - Semantic Fidelity

Dataset	Embeddings	Model	\overline{SF}	std	Class 1	Class 2	Class 3	Class 4	Class 5
HAR	GloVe	SEQL Emb-SEQL	0.902 0.923	0.028 0.025	0.930 0.958	$0.871 \\ 0.888$	0.925 0.931	0.865 0.901	0.921 0.938
	ConceptNet	SEQL Emb-SEQL	0.871 0.875	0.033 0.025	0.908 0.903	0.828 0.853	0.895 0.887	0.833 0.836	$0.889 \\ 0.894$
	YAGO-41	SEQL Emb-SEQL	0.867 0.835	0.029 0.043	0.899 0.897	$0.847 \\ 0.824$	0.893 0.861	0.823 0.767	0.872 0.827
	WordNet	SEQL Emb-SEQL	0.894 0.936	0.025 0.010	0.921 0.937	0.879 0.945	0.918 0.943	0.857 0.917	0.895 0.939
Protein	ChEBI-ChEMBL	SEQL Emb-SEQL	0.708 0.719	-					

PCA Visualization

Target: Coffee time Embedding: WordNet

Results - Classification Quality

Dataset	Model	Embeddings	F1	Accuracy	
HAR	SVM		0.502	0.564	
	LSTM		0.767	0.810	
	SEQL		0.973	0.961	
		ConceptNet	0.965	0.951	
	Emb-SEQL	GloVe	0.961	0.945	
		WordNet	0.968	0.955	
		YAGO-41	0.957	0.941	
Protein	SCIS_MA		_	0.948	
	HMM		-	0.918	SCIS_MA and HMM
	LSTM		0.797	0.796	results from [2]
	SEQL		0.902	0.903	
	Emb-SEQL	ChEBI-ChEMBL	0.898	0.901	

Achievements & Conclusion

- Introduction of *Groups*, regex like k-mer symbols
- Generation of *Groups* from background knowledge sources
- **Emb-SEQL**, a method to learn sparse linear models
- Semantic Fidelity a way to measure interpretability

• Background knowledge injection improves interpretability measured by Semantic Fidelity without hurting accuracy of learned model

Limitations & Future Work

- High memory demand of Emb-SEQL for large *Groups*
- Clustering method and *Group* size is crucial
- Background knowledge source is needed

- Semantic Fidelity for non-linear models
- Human-based evaluation of Semantic Fidelity

Thank you!

Please email severin.gsponer@insight-centre.org if you have further questions

This work was funded by Science Foundation Ireland (SFI) under Insight Centre for Data Analytics (grant 12/RC/2289)

Insight Centre for Data Analytics

References

[1] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster, P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha, J. Doppler, C. Holzmann, M. Kurz, G. Holl, R. Chavarriaga, H. Sagha, H. Bayati, M. Creatura, and J. d. R. Millàn. Collecting complex activity datasets in highly rich networked sensor environments. In 7th International Conference on Networked Sensing Systems (INSS)

[2] C. Zhou, B. Cule, and B. Goethals. Pattern based sequence classification. IEEE Transactions on Knowledge and Data Engineering, 28(5):1285–1298, 2016.